Package: RPEnsemble 0.5

RPEnsemble: Random Projection Ensemble Classification

Implements the methodology of "Cannings, T. I. and Samworth, R. J. (2017) Random-projection ensemble classification, J. Roy. Statist. Soc., Ser. B. (with discussion), 79, 959--1035". The random projection ensemble classifier is a general method for classification of high-dimensional data, based on careful combination of the results of applying an arbitrary base classifier to random projections of the feature vectors into a lower-dimensional space. The random projections are divided into non-overlapping blocks, and within each block the projection yielding the smallest estimate of the test error is selected. The random projection ensemble classifier then aggregates the results of applying the base classifier on the selected projections, with a data-driven voting threshold to determine the final assignment.

Authors:Timothy I. Cannings and Richard J. Samworth

RPEnsemble_0.5.tar.gz
RPEnsemble_0.5.zip(r-4.5)RPEnsemble_0.5.zip(r-4.4)RPEnsemble_0.5.zip(r-4.3)
RPEnsemble_0.5.tgz(r-4.4-any)RPEnsemble_0.5.tgz(r-4.3-any)
RPEnsemble_0.5.tar.gz(r-4.5-noble)RPEnsemble_0.5.tar.gz(r-4.4-noble)
RPEnsemble_0.5.tgz(r-4.4-emscripten)RPEnsemble_0.5.tgz(r-4.3-emscripten)
RPEnsemble.pdf |RPEnsemble.html
RPEnsemble/json (API)

# Install 'RPEnsemble' in R:
install.packages('RPEnsemble', repos = c('https://tc325.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • R - A rotation matrix

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.72 score 4 stars 13 scripts 165 downloads 8 exports 2 dependencies

Last updated 4 years agofrom:41cecb4e52. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-winOKNov 17 2024
R-4.5-linuxOKNov 17 2024
R-4.4-winOKNov 17 2024
R-4.4-macOKNov 17 2024
R-4.3-winOKNov 17 2024
R-4.3-macOKNov 17 2024

Exports:Other.classifierRPalphaRPChooseRPChooseSSRPEnsembleClassRPGenerateRPModelRPParallel

Dependencies:classMASS